Irina Myagkova (maksina) wrote,
Irina Myagkova
maksina

Category:

Соавтор "открытия века"

3 августа 2016 года исполнилось бы 85 лет Владимиру Борисовичу Брагинскому, выдающемуся российскому физику и педагогу.

Владимир Борисович Брагинский создал и до самого последнего времени возглавлял Московскую группу коллаборации LIGO - Laser Interferometer Gravitational-Wave Observatory.

Коллаборация LIGO 11 февраля 2016 года объявила об открытии гравитационных волн. Это событие называют "открытием века". Вклад в это открытие профессора МГУ Владимира Брагинского трудно переоценить - именно он, признанный мировой специалист в области квантовой гравитации, первым предложил искать гравитационные волны от черных дыр и первым обратил внимание на необходимость учитывать в измерениях квантовые эффекты.




 Более полувека Брагинский работал на физическом факультете МГУ, являясь создателем и руководителем научной группы «Прецизионные и квантовые измерения».


Далее с сайта физфака МГУ к его 75-летию. До экспериментальноо обнаружения гравитационных волн оставалось еще десятилетие.

Владимир Борисович Брагинский закончил физфак МГУ в 1954 году, был оставлен на работу в должности старшего лаборанта, затем стал ассистентом, старшим научным сотрудником, профессором, в настоящее время – главный научный сотрудник кафедры физики колебаний.

Вторая половина 20-го века отмечена интенсивным развитием известных и созданием новых, в том числе новых квантовых методов измерений, а также развитием теории квантовых измерений. Исходной работой, определившей направление исследований В.Б.Брагинского, можно считать его статью в ЖЭТФ [53, 1434 (1967)], в которой был описан эксперимент по обнаружению отклика осциллятора на внешнее воздействие, изменяющее его энергию на величину, малую по сравнению с его равновесной тепловой энергией (kT). Этот результат был достигнут благодаря значительному увеличению времени релаксации осциллятора. В этой же статье было приведено доказательство существования ранее неизвестного предела чувствительности в экспериментах с пробными объектами (электромагнитными и механическими осцилляторами, свободными массами). За этим пределом, имеющим чисто квантовое происхождение, в научной литературе закрепилось название "стандартный квантовый предел" (СКП, английская транскрипция - SQL), являющееся сейчас общепризнанным. Понижение порога обнаружения внешнего воздействия и, соответственно, достижение СКП возможно при уменьшении связи пробного объекта с термостатом, т.е. диссипации (трения). Иными словами, необходимо увеличивать добротность осцилляторов или время релаксации свободных масс. Изложенный результат послужил основанием следующих трех основных направлений исследований: разработка и создание систем с малой диссипацией, разработка и реализация новых методов измерений на основе таких систем, развитие теории квантовых измерений.

Наиболее яркие работы В.Б. Брагинского.

1971 год: подтверждена справедливость принципа эквивалентности на уровне 10-12 (результат, который остается непревзойденным); экспериментально установлено равенство модулей зарядов электрона и протона на уровне 10-21 и отсутствие свободных кварков в макрообъектах (с массой больше милликеновской на 7 порядков), что послужило основой глюонной модели барионов.
1977 год: предложены и обоснованы принципы квантовых неразрушающих измерений – КНИ (в английской транскрипции Quantum NonDemolition - QND), позволяющих преодолеть СКП. Этот новый принцип квантовых измерений во второй половине 80-х был успешно продемонстрирован в оптических опытах в ряде лабораторий Франции и США.
1987 год: предложены и созданы диэлектрические резонаторы СВЧ диапазона из сапфира с модами типа "шепчущая галерея", в них достигнута добротность, превышающая 109. Эти резонаторы успешно используются во вторичных стандартах частоты, для дальней спутниковой навигации и в радиоастрономии.
1989 год: предложены и реализованы оптические микрорезонаторы, также с модами типа "шепчущая галерея", с добротностью 3 108, которые позднее нашли применение в опытах по исследованию квантово-электродинамических эффектов и в различных оптоэлектронных устройствах.
1992 год: начата совместная работа с Калифорнийским Технологическим Институтом, поддерживаемая специальным грантом NSF США. Ее целью явилось участие группы ученых физического факультета под руководством Брагинского В.Б. в разработке лазерных гравитационно-волновых антенн (проект LIGO). В 2005 году 2 антенны первого поколения начали поиск гравитационного излучения, завершившееся успехом в спустя десять лет.
Tags: этот день в истории науки
Subscribe

Posts from This Journal “этот день в истории науки” Tag

promo maksina october 16, 2019 11:58 20
Buy for 40 tokens
Это тот рассказ, который привёл меня в Неаполь. Прочла - и очень захотелось если не к океану, то хотя бы к морю... Екатерина Годвер. Город Сюрреализм, символизм и море. https://author.today/work/34498 Мой город мне приснился. Большинству людей время от времени снятся сны…
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 12 comments

Posts from This Journal “этот день в истории науки” Tag